The Urey-Bradley Force Constants of Boron Halides and their Transferability

By Hiroshi Toyuki, Kazuhiro Shimizu and Hachiro Hiyama

(Received January 21, 1963)

The infrared and Raman spectra of several boron trihalides have been recorded¹⁻⁹⁾ and their Urey-Bradley force constants¹⁰⁾, except for those of boron triiodide, have already been calculated.

We have now recalculated the force constants of the boron trihalides BX₃ (X: F, Cl, Br and I) by using the most probable observed values of the fundamental frequencies of ¹⁰B and ¹¹B compounds as a means of studying the transferability of force constants from boron trihalides to boron mixed halides.

The force constants for boron mixed halides were estimated by applying the usual additive property¹¹⁾ to the recalculated values for boron trihalides.

The calculated values of the normal vibrational frequencies of boron mixed halides were obtained by using these constants and were compared with the observed values⁷.

Calculations

The boron trihalides have a planar configuration and belong to the point group D_{3h}^{12} . These tetraatomic molecules have six normal modes of vibration, of which two are degenerate; $\nu_1(A_1')$, $\nu_2(A_2'')$, $\nu_3(E')$ and $\nu_4(E')$. The A_1' mode is active only in the Raman and the A_2'' only in infrared spectra, while the doubly degenerate E' vibrations are both infrared and Raman active.

1) S. Venkateswaran, Indian. J. Phys., 6, 275 (1931).

Unfortunately we have no configuration data for boron mixed halides. If the boron mixed halides of the BX_2Y type are assumed to have a planar configuration, they belong to the point group C_{2v} . All six normal modes, thus, are nondegenerate; $\nu_1(A_1)$, $\nu_2(A_1)$, $\nu_3(A_1)$, $\nu_4(B_2)$, $\nu_5(B_1)$ and $\nu_6(B_1)$. All the vibrations are both infrared and Raman active.

In this paper, only the in-plane vibrations $(BX_3; A_1' \text{ and } E', BX_2Y; A_1 \text{ and } B_1)$ are described.

The following symmetry coordinates are used for the transformation into the factored F and G matrices defined by Wilson¹³:

For BX₃ molecules;

A₁';
$$S_1 = (\Delta r_1 + \Delta r_2 + \Delta r_3)/\sqrt{3}$$

E'; $S_3 = (2\Delta r_1 - \Delta r_2 - \Delta r_3)/\sqrt{6}$
 $S_4 = (2\Delta \alpha_{23} - \Delta \alpha_{12} - \Delta \alpha_{13})/\sqrt{6}$

For BX₂Y molecules;

$$A_{1}; \qquad S_{1} = (\Delta R_{1} + \Delta r_{2} + \Delta r_{3})/\sqrt{3}$$

$$S_{2} = (2\Delta R_{1} - \Delta r_{2} - \Delta r_{3})/\sqrt{6}$$

$$S_{3} = (2\Delta \beta_{23} - \Delta \alpha_{12} - \Delta \alpha_{13})/\sqrt{6}$$

$$B_{1}; \qquad S_{5} = (\Delta r_{2} - \Delta r_{3})/\sqrt{2}$$

$$S_{6} = (\Delta \alpha_{12} - \Delta \alpha_{13})/\sqrt{2}$$

The internal coordinates used in boron trihalides and boron mixed halides are shown in Fig. 1.

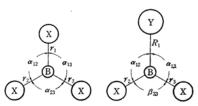


Fig. 1. Definition of internal coordinates for BX₃ and BX₂Y molecules.

The Urey-Bradley force constants of boron trihalides can be calculated uniquely by using the three observed values of fundamental frequencies (ν_1 , ν_3 and ν_4) which are listed in Table I.

In the calculation, the force constant F' is

²⁾ T. F. Anderson, E. D. N. Lassettre and D. M. Yost, J. Chem. Phys., 4, 703 (1936).

³⁾ C. R. Bailey, J. B. Hale and J. W. Thompson, Proc. Roy. Soc., A161, 107 (1937).

⁴⁾ D. M. Gage and E. F. Barker, J. Chem. Phys., 7, 455 (1939).

⁵⁾ G. Herzberg, "Molecular Spectra and Molecular Structure", Vol II, 299 D. Van. Nostrand Princeton, N. J. (1949).

R. E. Scruby, J. R. Lacher and J. D. Park, J. Chem. Phys., 19, 386 (1951).

⁷⁾ L. P. Lindman and M. K. Wilson, ibid., 24, 242 (1956).

⁸⁾ D. C. Mckean, ibid., 24, 1002 (1956).

⁹⁾ T. Wentink and V. H. Tienusuu, ibid., 28, 826 (1958). 10) T. Shimanouchi, Private communication, "Force constants of small molecules", (1962), p. 10. (Department of Chemistry, Faculty of Science, The University of Tokyo, Tokyo, Japan)

¹¹⁾ T. Shimanouchi, J. Chem. Phys., 17, 245, 734, 848 (1949).
12) J. H. M. Bowen, "Tables of Interatomic Distances and Configuration in Moleculer and Ions", M 17, The Chemical Society, Burlington House, W. 1, London (1958).

¹³⁾ E. B. Wilson, J. Chem. Phys., 9, 76 (1941).

TABLE I. TRIHALIDE FREQUENCIES USED TO CALCULATE FORCE CONSTANTS (cm⁻¹)

	ν_1	ν_3	ν_4
$^{10}{ m BF_3^{a)}}$	888	1505	482
$^{11}{ m BF_3^{a)}}$	888	1454	480
10BCl ₃ a)	471	994	
11BCl ₃ a)	471	954	243
$^{10}\mathrm{BBr_3^{b)}}$	278	856	150
11 BBr 3 ^{b)}	278	820	150
$^{10}{ m BI_3}^{ m b)}$	190	737	100
11 BI ₃ b)	190	704	100

- a) From Ref. 7
- b) From Ref. 9

assumed to be equal to $-0.1\,F$, as usual¹¹, and the following molecular constants which have been previously reported are used; $r(B-F)=1.295\,\text{Å}^{14}$, $r(B-Cl)=1.73\,\text{Å}^{12}$, $r(B-Br)=1.87\,\text{Å}^{15}$ and $r(B-I)=2.10\,\text{Å}^{9}$, while all bond angles $=120^{\circ 12,14,15}$.

For boron triiodide, the tentative values which had been proposed by Wentink and Tiensuu⁹⁾ were used because there are no experimental values.

The force constants calculated for each boron trihalide to fit the most probable fundamental frequencies are shown in Table II.

In Table II, the force constants for the 10 B compound of boron trichloride are not given because the frequency ν_4 for this molecule has not been observed, as is shown in Table I.

Table II. Force constants of boron trihalides (10⁵ dyn./cm.)

	K	H	$\boldsymbol{\mathit{F}}$
$^{10}\mathrm{BF}_3$	6.032	0.210	0.932
$^{11}\mathrm{BF_3}$	6.051	0.212	0.925
$^{10}BCl_3$	_		
$^{11}BCl_3$	3.022	0.055	0.537
$^{10}\mathrm{BBr_3}$	2.401	0.058	0.412
$^{11}\mathrm{BBr_3}$	2.406	0.059	0.411
$^{10}\mathrm{BI}_3$	1.838	0.042	0.287
$^{11}\mathrm{BI}_3$	1.838	0.041	0.287

Table III. Estimated force constants for boron mixed halides (105 dyn./cm.)

It may be seen in Table II that the values for ¹⁰B and ¹¹B compounds are approximately equal, as was expected. The force constants of boron mixed halides are estimated by applying

Table IV. Observed and calculated frequencies of boron mixed halides (cm^{-1})

		(CIII	-)					
		ν_1	ν_2	ν_3	ν_5	ν_6		
¹⁰ BF ₂ Cl	Obs. Calcd.	1286 1265	701 708	428	1470 1485	366 367		
¹¹ BF ₂ Cl	Obs. Calcd.	1242 1223	696 703	427 428	1421 1428	366 365		
$^{10}\mathrm{BF}_{2}\mathrm{Br}$	Obs. Calcd.	1247 1228	637 646	363	1468 1483	339		
$^{11}\mathrm{BF}_{2}\mathrm{Br}$	Obs. Calcd.	1208 1188	632 639	363	1417 1431	337		
$^{10}\mathrm{BF}_{2}\mathrm{I}$	Obs. Calcd.	1197	615	326	1480	322		
$^{11}\mathrm{BF}_{2}\mathrm{I}$	Obs. Calcd.	1161	608	325	1428	320		
$^{10}\mathrm{BCl_2F}$	Obs. Calcd.	1355 1360	575	 268	1031 1035	376		
$^{11}BCl_{2}F$	Obs. Calcd.	1312 1315	571	 267	993 993	375		
$^{10}BCl_{2}Br$	Obs. Calcd.	916 915	409	214	991 991	208		
$^{11}BCl_{2}Br$	Obs. Calcd.	878 878	405 409	218 213	951 952	207		
$^{10}\mathrm{BCl}_2\mathrm{I}$	Obs. Calcd.	854	378	 196	985	185		
$^{11}BCl_{2}I$	Obs. Calcd.	820	377	196	946	185		
$^{10}BBr_{2}F$	Obs. Calcd.	1344 1342	442	178	901 915	324		
$^{11}BBr_{2}F$	Obs. Calcd.	1302 1298	439	178	862 876	324		
¹⁰ BBr ₂ Cl	Obs. Calcd.	954 952	346	 166	864 860	192		
¹¹ BBr ₂ Cl	Obs. Calcd.	918 913	346	 166	827 824	195 192		
$^{10}\mathrm{BBr}_{2}\mathrm{I}$	Obs. Calcd.	834	230	141	850	128		
$^{11}\mathrm{BBr}_{2}\mathrm{I}$	Obs. Calcd.	 798	230	1 4 1	813	128		
$^{10}\mathrm{BI}_2\mathrm{F}$	Obs. Calcd.	1319	378	123	818	302		
$^{11}\mathrm{BI}_2\mathrm{F}$	Obs. Calcd.	1277	374	123	782	302		
$^{10}\mathrm{BI}_{2}\mathrm{Cl}$	Obs. Calcd.	916	287	118	750	170		
¹¹ BI ₂ Cl	Obs. Calcd.	880	286	118	717	170		
$^{10}\mathrm{BI}_2\mathrm{Br}$	Obs. Calcd.	812	220	108	 746	124		
$^{11}\mathrm{BI}_{2}\mathrm{Br}$	Obs. Calcd.	777	 220	108	713	124		
The observed values are cited from the Ref 7								

The observed values are cited from the Ref. 7.

¹⁴⁾ A. H. Nielsen, ibid., 22, 659 (1954).

¹⁵⁾ H. A. Levy and L. O. Brockway, J. Am. Chem. Soc., 59, 2085 (1937).

July, 1963] 785

the usual additive property to the constants for ¹¹B compounds of boron trihalides.

The bending force constant, H, and the repulsive force constant, F, are evaluated from the following equation;

$$H(X-B-Y) = [H(X-B-X) + H(Y-B-Y)]/2$$

$$F(X \cdots Y) = [F(X \cdots X) + F(Y \cdots Y)]/2$$

The stretching force constant, K, is assumed to be equal to one in boron trihalides.

The values estimated for boron mixed halides are shown in Table III.

The normal vibrational frequencies of boron mixed halides are calculated by using these constants.

The molecular constants for these compounds have not been given. Since it may be assumed that the nature of bonds of these molecules does not differ greatly from that of boron trihalides, their values are taken from those of the boron trihalides.

Results

It has been described how Urey-Bradley potential function is quite suitable for calculating the normal vibrational frequencies of saturated hydrocarbons and their halogen compounds¹¹).

Making use of this function with reference to boron halides, we have obtained a good agreement between the observed and the calculated values of vibrational frequencies for boron mixed halides, as Table IV shows.

The frequencies for ν_4 corresponding to the out-of-plane bending vibration are omitted in Table IV.

The greatest difference between the observed and the calculated values was about $\pm 2\%$, while the average deviation was about $\pm 1\%$.

It has thus been found that the transferability of Urey-Bradley force constants from boron trihalides to boron mixed halides was reasonable and that the error due to the assumed planar configuration and molecular constants of boron mixed halides had no great effect to the transferability of the force constants.

The authors wish to thank Professor Haruo Shingu of Kyoto University, Professor H. Murata of Hiroshima University, and Dr. K. Kawai of the author's institute for their helpful advice.

Osaka Municipal Technical Research Institute Kita-ku, Osaka